- 相关推荐
初中生有理数说课稿
在教学工作者实际的教学活动中,通常需要用到说课稿来辅助教学,说课稿有助于提高教师的语言表达能力。写说课稿需要注意哪些格式呢?以下是小编精心整理的初中生有理数说课稿,欢迎阅读与收藏。
初中生有理数说课稿1
一、说教材
1、教材的地位及作用。
有理数的运算是本章的重点,是学好后续内容的重要前提。本节课是在学习了有理数乘法的基础上进行的,是熟练进行有理数运算的必备知识,它与有理数的其它运算形成了一个完整的知识体系。整节内容渗透了从一般到特殊、化未知到已知、用已知求新知的数学思想方法。通过本节学习让学生感受数学学习的乐趣,体验数学思维的力量,发展学生自主创新的意识。
2、教学目标。
根据学生已有的认知基础及本课教材的地位及作用,依据课程标准,我确定本节课的教学目标为:
(1)知识技能方面:理解有理数除法的意义,熟练掌握有理数除法法则,会求有理数的倒数,会进行有理数的除法运算。
(2)过程与方法方面:通过有理数除法法则的导出及运算,让学生体会转化思想,感知数学知识的普遍性、相互转化性。
(3)情感态度方面:通过生生合作,使学生体会在解决问题中与他人合作的重要性,通过积极参与教学活动,让学生充分体验问题的探索过程,培养学生的探究意识,激发学生学好数学的热情。
3、教学重点、难点
在整个知识系统中,学生能够熟练地进行有理数的运算是很重要的,因此本节课的教学重点确定为熟练进行有理数的除法运算。勤思、善思,是学好数学的必要条件。本节内容是在有理数乘法的基础上进行的,有理数的除法可以利用乘法进行,基于此,教科书中给出了两种法则,对初一学生来说,理解这两种法则有一定的难度,因此,本节课的教学难点定为:理解有理数的除法法则。
二、说教法
为了突出重点、突破难点,使学生能达到本节设定的教学目标,我采用的教学方法是:
针对初一学生的思维依赖性强,思维活跃,但抽象概括能力相对较弱的特点,本节课充分借助多媒体来增强直观效果。运用“自学—辅导”模式,遵循“面向全体,尊重主体”的教学理念,采用“先学后教,当堂训练”的课堂教学结构,把教学过程化为学生自学、大胆猜想、合作交流、归纳总结的过程,使课堂教学遵循从生动、直观到抽象思维的认识规律。
三、说学法
在教学活动中,为了激发学生自主学习,真正做到课堂教学面向全体学生,在教师的组织引导下,采用自主探究、合作交流的'研讨式学习方式,让学生思考问题、获取知识、掌握方法,从而培养学生动手、动口、动脑的能力,成为学习的真正主人。
四、教学过程设计
1、设计问题,导入课题,提出课堂教学目标。
本着设计问题要有启发性、探索性的原则,首先出示了学生熟知的问题8÷(-4)=?也就是说(-4)x?=8
得出(-4)x(-2)=8所以8÷(-4)=-2而我们知道8x(-1/4)=-2所以8÷(-4)=8x(-1/4)
2、指导学生自学。
课件揭示自学指导(1)阅读教材第34页内容;(2)小组讨论疑难问题。这样做的目的是:让学生带着明确的任务,掌握恰当的自学方法,从而使自学更有效,与此同时,坚持每次自学前给予方法指导,可以使学生积累自学方法,从而提高学生的自学能力。
3、学生自学,教师巡视。
学生根据自学指导开始自学,通过察言观色,了解学生自学情况,使每个学生都积极动脑,认真学习,从而挖掘每个学生的潜力。在这个过程中,我会重点巡视中差的学生,帮助他们端正学习态度。
4、检查自学效果。
课件展示与例题类似的习题,让后进生板演或回答,要面向全体学生,后进生回答或板演时,要照顾到全体同学,让他们聆听别人回答问题,随时准备纠正错误,通过巡视,搜集学生存在的错误,并在头脑里分类,哪些属于新知方面的,哪些属于旧知遗忘或粗心大意的,把倾向性的错误用彩色粉笔写在黑板对应练习处,供讲评时用。通过这个过程,培养学生分析问题和解决问题以及学已致用的能力。
5、引导学生更正,指导学生运用。
学生观察板演,找出错误或比较与自己做的方法,结果是否与板演的相同,学生自由更正,让他们各抒己见,小组讨论,说出错因,更正的道理,引导学生归纳,上升为理论,指导以后的学习。这个过程既是帮助后进生解决疑难问题,又通过纠正错误,训练一题多解,使优等生了解更加透彻,训练他们的求异思维和创新思维,培养了他们的创新精神和一题多解的能力。同时,在这个过程中,要引导学生寻找规律,帮助学生归纳上升为理论,引导学生找出运用时可能出现的错误,这是从理论到理论架起一座桥梁,以免学生走弯路。
6、当堂训练。
为学生巩固知识,加深理解,我给出一组练习,这组题目,分三个梯度:法则的直接运用、有理数的除法运算、解决实际问题,而且把这些题分为必做题、选做题。通过完成课堂作业,检测每一位学生是否都能当堂达到学习目的。在这个过程中,我会不断巡视,了解哪些同学真正做到了“堂堂清”,哪些同学课后需要“开小灶”,使课外辅导要有针对性。
7、反思小结,观点提炼。
通过前六个环节,学生已对本节课所学的内容有了较深刻的理解和掌握,引导学生进行反思,整理知识,总结规律,提炼思想方法。让学生从多角度对本节课归纳总结、感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力。
8、布置作业。
课本38页四题让学生做到作业本上,以考查学生对本节基本方法和基本技能的掌握情况。
初中生有理数说课稿2
本节课我所讲的是人教版七年级上册第一章《有理数》中的第三节第二课《有理数的减法》的第一课时。
一、说课标:
数与代数部分是义务教育阶段数学课程的重要内容。这部分内容包括数的概念、数的运算、数的估计;字母表数、代数式及其运算;方程、方程组、不等式,函数等。而数的运算伴随着数的形成与发展不断丰富,从最基本的自然数的四则运算,扩展到有理数的四则运算、乘方、开方运算等。新课标中指出:运算能力主要是根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。新课标是在总目标的四个方面之一的“数学思考”中提出运算能力的思维和抽象思维。”这说明运算能力是数学思考的重要内涵。不仅如此,运算能力对新课标在总目标中提出的其他三个方面目标的整体实现,同样是不可缺少的基本条件。
二、说教材的地位和作用:
“有理数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算.有理数的减法是小学减法的延续,通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,它对今后正确熟练地进行有理数的混合运算奠定基础,并对解决实际问题都有十分重要的作用。
三、说学情:
在生活中,学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面。在小学阶段学生学习了局限性的减法运算,并进行了技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因比,在教学中一方面要利用这些既有的知识储备作为“知识生长的最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强,因此在教学过程中要做好调控和引导,并且要让学生体验到成功的'快乐。
四、说教学目标:
依据《课程标准》的要求,结合本班学生情况,确定本节课的教学目标如下:
知识与技能目标:掌握有理数的减法法则,能运用有理数的减法法则进行运算。
过程与方法目标:经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过对有理数减法法则的探讨,体验数学的转化思想。
情感态度与价值观目标:在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:理解有理数减法法则的意义,会运用有理数的减法法则进行运算。难点确定为:有理数减法法则的探讨。
五、说教学方法和学法指导:
《新课标》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者,基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导发现法”组织教学.其基本程序设计为:创设情境提出猜想一探索验证一总结归纳一反馈运用,上述教学程序的实施很大程度上依赖于学生的学习,因此对学生学习方式的指导是十分重要的,本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。
六、说教学过程及设计思路:
本节课主要以多媒体课件教学,通过创设情境,层层深入,环环相扣,师生互动,探讨交流,讲练结合设计本节课. (一)复习回顾
1.-2的相反数是____,+0.3的相反数____,相反数是它的本身的数是___.
2.计算
(1)4 + 16 =(2)(–2)+(–7)=
(3)(–1)+3.6 =(4)2 +(–4)=(5)(–5)+ 5 =(6)0 +(–8)=
设计意图:通过复习回顾,熟悉旧知,为学生本节课的学习做好知识准备。
(二)创设情境、引入新课
北京某天气温是-3C~3C,这天的温差是多少摄氏度呢?学生列式表示3-(-3)=?但是不知道结果。
设计意图:通过小知识引入问题,然后引出有理数的减法运算,引起学生的探究欲望,激发学生的学习兴趣。
(三)探究新知
同学们都知道,减法和加法互为逆运算,3-(-3)=?也就是问什么数加上-3等于3?
因为6+(-3)=3所以3-(-3)=6
师问:3+?=6生答:3+ 3=6
请同学们观察以下两个式子:
(1)3-(–3)=6;
(2)3+3=6
你发现了什么?换些数试试。(学生自主思考)9-8=____,9+(-8)=____; 15-7=____, 15+(-7)=____.
然后比较上面的式子,能发现其中的规律吗?分小组讨论。然后师生共同归纳法则,教师板书法则。并强调减法在运算时有2个要素要发生变化,1个要素不变。(两变一不变)
设计意图:通过观察、交流、讨论,归纳发现有理数的减法法则,感受转化的数学思想。
练习:下列括号内各应填什么数?
(1)(-2)-(-3)=(-2)+____;
(2)0 -(-4)= 0 ____ 4;
(3)(-6)- 3 =(-6)+_______;
(4)1-(+39)= ____ +(-39).
设计意图:通过学生边口述,边解释法则,学生能找准在将减法变加法的过程中什么变,什么不变。
(四)典例讲解
例4计算:
(1)(-3)-(-5)(2)0-7
教师板演示范(1)(4),示范书写过程,学生完成(2)(3)。
设计意图:通过教师的板演,为学生的书写起示范作用,学生练习暴露出来的问题,教师可以及时发现并指正。
思考:在小学,只有当a大于或等于b时,我们才会做a-b,现在,当a小于b时,你会做a-b吗?
一般地,较小的数减去较大的数,所得的差的符号是什么?
通过上述例题,学生不难解答。
初中生有理数说课稿3
一、说教材:
(一)地位和作用
有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的重点之一。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
(二)课程目标:
1、知识与技能目标:
⑴了解有理数加法的意义。
⑵经历探索有理数加法法则的过程,理解并掌握有理数加法的法则。
(3)运用有理数加法法则正确进行运算(主要是整数的运算)。
2、过程与方法目标:
(1)在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
(2)在探索过程中感受数形结合和分类讨论的数学思想。
(3)渗透由特殊到一般的唯物辩证法思想
3、情感态度与价值观目标:
(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
(三)教学重点、难点:
重点:理解和运用有理数的加法法则
难点:理解有理数加法法则,尤其是理解异号两数相加的法则
二、说教法:
在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。
新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价与小组评价相结合);
行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);
省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。
信:在本节课的探究法则与运用法则中体验成功,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误)。
同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。
另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。
三、说学法:
本节课同号两数相加学生易理解,难点是异号两数相加,所以在教学时要注意以下几点:
第一、学生在小学阶段的学习和前面正数、负数、数轴、绝对值的学习为本节课提供了学习的前提;
第二、七年级的学生已经初步具备合作和交流的能力,通过探究和合作获得成功基本上可以实现课程目标的;
第三、范例讲解和随堂练习始终是学以致用的有效方法。范例讲解与随堂练习都是学生强化理解法则、正确运用法则的地方。范例讲解时应引导学生步步说理,随堂练习时应引导学生通过自我反省、小组评价、来克服解题时的错误,有必要教师给与规范矫正。
四、说教学程序:
本节课我将“新、行、省、信”四字教育法运用到教学中,教学过程划分为以下几个环节:(简述如下)
1、引入新知——新(创设新的问题情境)。
今年恰好举行了世界杯,所以通过足球净胜球问题引入教学,情境活泼、自然。在学生回答(-1)+(+1)=0和(+1)+(-1)=0时渗透“正负抵消”的思想引入讨论整数加法的几种情形。
2、探究新知——行
(1)类比小学学习加法的“实物数数法”(1用一个表示,-1用一个表示,那么2就用两个表示的方法)和“正负抵消”法形象直观得出一组有理数加法的结果,教学时除(+2)+(+3)教师示范得出外,其他几例均可学生自主得出,教师在聆听学生讲述自己的方法时及时给与积极的评价。
(2)联系前面数轴,运用数轴也可以形象得出上述四组数的结果。在教学时要强调加法的.“叠加性”,此处学生易出错。如在讲(-2)+(-3)时学生虽然明白-2表示从原点出发往西移动2个单位,但在加上-3时易犯“又从原点出发”的错误,教学时可以采取以下策略:一是先讲点的移动再移动然后用数学式子表示,在此基础上出示其它几个算式,让学生运用点的移动说明运算结果;
二是联系孩提时学数数(数手指)的方法进行类比。在此处的教学师应加强引导,在讲完第一个式子的表示过程后其他三个让学生依照刚才教师的方法和思路独立完成,在学生发表见解时师可以让其他学生给出矫正和评价。
3、得出新知——省
在前面形象得出结果的基础上教师诱导学生从四个例子中发现一般的结论。教师引导学生观察。
问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数同0相加,和是多少?
在引导学生观察前可以让学生小组合作、交流、讨论。教师可以参与到学生当中的讨论中,在讨论中师可诱导学生先看式子的和的符号与两个加数的符号的关系,再诱导学生看和的绝对值与两个加数的绝对值的关系。如果学生有困难,师可引导学生分类:同号类、异号类、相反数类,观察符号与绝对值特征,再请学生发表自己或小组成员的见解。此处应肯定学生朴素的语言特别应表彰有独特见解和说得完备的学生。最后师生一起用比较规范的语言总结有理数加法法则。
4、运用新知——信
此处的“信”主要是指在运用法则解决问题时对照法则“步步说理”,从而树立学生学好法则用好法则的信心。特别是异号两数相加时更要着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在做题时应该注意什么(此处又是“省”),在随堂练习时教师关键是反馈矫正、积极评价。
5、联系实际、小小拓展;
为落实“数学来源于生活、生活处处有数学”的理念,此处可安排两道实际应用题:如:请根据式子(-4)+3举出一个恰当的生活情境;(此例有很多好情境,教师应对举例举得好的学生给与积极评价)。
初中生有理数说课稿4
我说课的内容是七年级《数学》上册《有理数的乘法》的第1课时。下面我主要从教材分析、教学目标、教法与学法、教学过程分析四个方面进行说课:
一、教材分析:
1.教学内容:
本节教材设置了甲、乙两个水库的水位变化的现实情境,引导学生仔细观察一列算式的因数与积的变化规律,使他们自己发现、探索出有理数的乘法法则,并能用自己的语言描术,由有理数的乘法的练习中引出倒数的概念,进一步探索出几个不等于零的有理数乘法的法则及乘法运算律,使同学们真正地掌握有理数的乘法运算。
2.教材地位和作用:
“有理数的乘法(1)”占有十分重要的地位,它是前几课的延伸与拓展,是有理数除法运算的基础,也为今后学习有理数四则混合运算奠定了基础,具有很重要的地位。
二、教学目标:
1.能力目标:经常探索有理数乘法法则,发展观察、归纳、猜想、验证等能力。
知识目标:会运用有理数的乘法法则熟练地进行有理数的乘法运算。
2.教学重难点:
本节的重点即为经历探索有理数乘法法则运算律的过程,发展学生观察、归纳、猜测、验证等能力,使学生在理解记忆乘法法则的基础上会熟练地进行有理数的乘法运算。难点是确定多个不等于零的有理数相乘的积的符号,及有一个为零时积的情况。
三、教法与学法:
1.教法:
采取师生互动方式,并将分析、观察、验证相结合。通过学生主动性学习,教师的指导,练习的巩固层层展开教学,激发学生的求知愿望,让学生更好地理解和接受新知识。
2.学法:
事先让学生预习,有不懂的再在课堂上在教师引导下弄懂。学生在教师引导下进行观察、归纳、猜想、验证,并通过练习及时巩固新学知识,能熟练地进行乘法运算。
四、教学过程分析:
1.导入过程:
利用课本的问题的案例来导入,既让学生感受数学与生活实际问题的联系,又让学生在解决问题的过程中回顾小学已学过的'乘法知识,为后面学习负有理数的乘法做铺垫。
2.探索新知过程:
首先,我引用课本的议一议和猜一猜中的两组式子,逐步引导学生发现其中规律,猜出结果,并自己归纳出乘法法则。其中利用导入中所书写的式子,节省课堂时间。
对于例题的选取,我先了两个例题,例题共五个小题,我先示范做一个题,其余让学生尝试用刚学的知识自己解决,这样做的目的是先示范做题的步骤和格式,再查看学生是否能正确运用乘法法则进行计算。其中还利用例1引入有理数中倒数的概念。在例题的选取中,我还有意挑选了不同的题型的乘法计算题:例1是两个数相乘的,(1)小题是一负一正相乘,(2)小题是两个负整数相乘,(3)小题是两个负分数相乘的;例2是三个数相乘的,(1)小题含一个负数,(2)小题含2个负数。这样做既可让学生了解不同题型,也为后面的教学做了准备。我还利用例2的第2小题添加“0”改变题目,让学生了解有一个因数为0时,积是0,我认为这样不但让学生了解了知识,也节省了课堂时间。
对于乘法中确定符号的问题,我引导学生通过对例题中式子的观察,以及对原有乘法知识的回顾,提示学生留意各个式子中负数的个数,引导学生发现规律,解决课本76页议一议中的积的符号的确定问题。
3.随堂练习:
在课堂练习题的选取中,我也有意选择了多种题型加以巩固,并增加了一个两个数的和与第三个数相乘的题型,让学生再次了解要先计算小括号中的加法,明确此类题型的计算顺序。
4. 小结:
以提问的形式大致回顾本节所学的内容,主要问了三个问题:
(1)这节课我们主要学习了些什么内容?
(2)有理数的乘法法则是什么?
(3)什么样的数互为倒数?
5.作业:
作业我同样选取不同题型的五个计算题,目的是想查看学生学的效果如何,是否对哪类题型还留有疑问。
6.自我评价:
这堂课我觉得满意的,是能够利用短暂的45分钟把要学的知识穿插在学与练当中,充分地利用了课堂有限的时间,并且能让学生边学边练,及时巩固。
当然这堂课也有很多不足之处,我觉得自己对于课堂上学生做练习时出现的一些小问题处理还没有能够处理得很好,我应该吸取经验教训,再以后的教学中加以改进。
另外对于多个有理数相乘时的符号问题,我觉得自己归纳得还不是很到位,我想解决的办法是在以后的练习中再做些补充,让学生加深理解。从中我也得到一个教训,再以后的教学工作中,我还应该多学习教学方法,多思考如何归纳知识点,才能更好地帮学生形成一个系统的知识系统!
初中生有理数说课稿5
一、说教材:
(一)地位、作用:
本节课是在学习了正负数、相反数、有理数的加法运算之后,以初中代数第一册p80页的有理数的减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用
(二)教学目标:
1、知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。
2、能力目标:培养学生探究思维能力和分析解决问题的能力。
3、情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。
(三)重点、难点:
重点:有理数的减法法则,熟练地进行有理数的减法运算
难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算
二、说教学方法:
根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的'问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
附教学工具:温度计、投影仪、多媒体
三、说学法:
根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
四、说教学程序:
(一)引入课题环节:
1、复习有理数的加法法则,为新课的讲授作好铺垫。
2、(提问)用算式表示:与-3的和等于-10的数。
(根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。
(二)新课讲解环节:
1、通过投影仪给出以下算式:
减法加法
(+10)-(+3)=+7 (+10)+(-3)=+7
让学生比较上面这两个算式并讨论后得出:
(+10)-(+3)=(+10)+(-3)
再给出以下算式:
减法加法
(+5)-(+2)=+3(+5)+(-2)=+3
继续让学生比较上面这两个算式并讨论后得出:
(+5)-(+2)=(+5)+(-2)
从而,它启发我们有理数的减法可以转化成加法进行
2、讲解课本p80的内容,回答复习题2提出的问题即如何求(-10)-(-3)的结果。通过分析讲解,请学生自己归纳出有理数的减法法则,最后老师再完整地总结出法则。
文字叙述:减去一个数,等于加上这个数的相反数
字母表示:a-b=a+(-b) (说明:简明的表示方法,体现字母表示数的优越性,实际运算时会更加方便)
强调运用法则时:被减数不变,减号变加号,减数变成其相反数减数变号。
3、出示温度计,用多媒体出现(如p81的图2-20),并进行动画演示,通过求15℃比5℃高多少?15℃比-5℃高多少?的实例来说明减法法则的合理性以及有理数减法的实际意义。